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We develop a new method for obtaining connectivity data for nonlinear reaction networks, based on linear
response experiments. In our approach the linear response is not the result of an approximation procedure but
is due to the appropriate design of the response experiments, that is (1) they are carried out with the preservation
of constant values for the total (labeled plus unlabeled) input and output fluxes and (2) the labeled compounds
obey a neutrality condition (i.e., they have practically the same kinetic and transport properties as the unlabeled
compounds). Under these circumstances the linear response equations hold even though the kinetics of the
process is highly nonlinear. On the basis of this linear response law, we develop a method for evaluating
reaction connectivities in biochemical networks from stationary response experiments. Given a system in a
stationary regime, a pulse of a labeled species is introduced (with conservation of the total flux) and then the
response of all the species of the network is recorded. The mechanistic information is contained in a connectivity
matrix,K , which can be evaluated from the response data by means of differential as well as integral methods.
The approach does not require any prior knowledge of the reaction mechanism. We carried out a numerical
study of the method, based on a two-step procedure. Starting from a known reaction mechanism, we generated
response data sets, to which we add noise; then, we use the noisy data sets for retrieving the connectivity
matrix. The calculations were done with two programs written in Mathematica: the urea cycle and the upper
part of glycolysis are used as sample biochemical networks. Given enough computer power, there are no
limitations concerning the number of species involved in the response experiments; on current desktop systems
processing responses of teens of species would take a few hours. The method is limited by the occurrence of
experimental errors: if experimental errors in the evaluation of fluxes are larger than 10%, the method may
fail to reproduce the correct values of some elements of the connectivity matrix.

1. Introduction

In our previous work we carried out a systematic theoretical
analysis of a new type of response experiment in physical,
chemical, biological kinetics, and population dynamics.1-3 In
our studies the response is linear, even though the underlying
evolution equations are generally nonlinear. In the suggested
experiments the linearity is due to the use of labeled species,
which have the same kinetic and transport properties as the
unlabeled species (neutrality condition), and not due to a
linearization procedure. We have shown that this type of
response experiment is useful and we presented different
applications of our approach: for example, the study of fractal
response experiments in desorption kinetics,4 the study of
on-off time distributions in single molecule kinetics,5 and
the analysis of geographical spread of mutations in human
populations.5,6

In this paper we focus on the application of our approach to
the qualitative and quantitative analysis of complex reaction
systems, more precisely to the determination of the reaction
connectivities and mechanisms from neutral response experi-
ments. Our current approach shares common features with other
types of response experiments developed recently.7,8 The
structure of the paper is the following. In section 2 we give a

short summary of the method of neutral response experiments
in homogeneous systems and elaborate a general approach for
determining the reaction connectivities. In section 3 we present
the simulation approach used in our research. In section 4 we
give the results of the simulation approach applied to the urea
cycle and the upper part of glycolysis. Finally in section 5 we
consider the limits of our procedure as well as the possibilities
of extending our approach to the quantitative analysis of reaction
networks.

2. Species Connectivities from Response Experiments

We study a complex chemical system and consider a set of
Sspecies Mu, u ) 1, ...,Swhich can carry one or more identical
molecular fragments; these are unchanged during the process
and we refer to these species as “carriers”. We limit ourselves
to the case of isothermal, well-stirred, homogeneous systems,
for which the concentrationscu ) cu(t), u ) 1, ..., S, of the
chemicals Mu, u ) 1, ...,S,are space independent and depend
only on time.1 The kinetic equations of the process can be
expressed in the following form:

whereFu
((c;t) are the rates of formation and consumption of

the species Mu, respectively,Ju
((t) are the input and output
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dcu(t)/dt ) Ju
+(t) - Ju

-(t) + Fu
+(c;t) - Fu

-(c;t)
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fluxes of Mu, respectively, and

is the composition vector of the system. Together with the initial
condition

eq 1 determines the time evolution of the concentration vector.
We denote byzu the number of fragments in the carrier

speciesu. We use the notation

for a molecular fragment in the carrier Mu. All fragments Fu in
different carriers Mu have the same structure; the labelu means
that a fragment belongs to a given carrier. The concentrations
fu(t), u ) 1, ...,S, of the fragments Fu, u ) 1, ...,S,which belong
to different carriers are given by

The kinetic equation (1) can be expressed in terms of the
concentrationsfu(t), u ) 1, ...,S, of the fragment Fu, u ) 1, ...,
S, in the carrieru; we have

where

are the rates of formation and consumption of the fragment Fu,
in the carrieru ) 1, ...,S, and

are input and output fluxes of fragment Fu, in the carrieru ) 1,
..., S, respectively. A fragment is transferred from one carrier
to another. These transfer processes involving fragments Fu, u
) 1, ...,S, among different carriers can be represented as

whereRu′u ) Ru′u(c;t) is the rate of transport of the fragment Fu

from a carrier Mu to a carrier Mu′. The ratesRu′u are related to
the formation and consumption ratesRu

((c;t) of the fragment
Fu in the carrier Mu by means of the balance equations

If the mechanism and kinetics of the process are known, then
the transformation ratesRu′u ) Ru′u(c;t) can be evaluated by
using the mass action law or other kinetic laws.

Now we can consider a kinetic tracer experiment by assuming
that a fractionRu, u ) 1, ..., S, of the “in” flux Ju

+(t) of the
fragment Fu is replaced by a labeled fragment Fu

/ and suppose
that there is no kinetic isotope effect; that is, the rates of the
processes involving labeled species are the same as the rates of
the processes involving unlabeled species. We assume that the
fractionsâu, u ) 1, ...,S, of the labeled fragments in the output
fluxes Ju

-(t), u ) 1, ...,S,can be measured experimentally.

We introduce the specific rates of transport of a fragment
from one carrier to another and in and out of the system:

Hereωuu′(t) dt ) dt Ruu′(t)/fu′ is the infinitesimal probability of
transport of a fragment from the carrier Mu′ to the carrier Mu at
a time betweent and t + dt; similarly, Ωu

( dt ) dt Ju
((t)/fu is

the infinitesimal probability that a fragment in the carrier Mu

enters or leaves the system at a time betweent and t + dt. If
the kinetic isotope effect is missing, the rate of exchange of the
labeled fragments in the system can be completely expressed
in terms of these infinitesimal probabilities. We assume that
the time dependences of the total ratesRu′u ) Ru′u(c;t) and
Ju

((t) ) zuJu
((t) attached to the total amounts of fragments

from different carriers, labeled and unlabeled, are not changed
during the process. We use the notationsfu

/(t), u ) 1, ...,S, for
the concentrations of labeled fragments andJu

(
/(t), u ) 1, ...,

S, for the input and output fluxes of labeled fragments,
respectively. We use the kinetic isotope approach in the
form suggested by Neiman and Gal9 and derive the balance
equations1

and

We define the fractions of labeled fragments in the input fluxes

and the fractions of labeled fragments in the output fluxes

From eqs 13-16 we can derive the following response laws:
1-2

where øuu′(t;t′) are non-negative susceptibility functions that
fulfill the normalization condition:

Two types of expressions have been derived for the susceptibility
functionsøuu′(t;t′). Here we give only one set of relations, which
depend on the Green functionsGuu′(t,t′) ) [G(t,t′)]uu′, which
are the solutions of the matrix differential equation

c(t) ) [cu(t)]u)1,...,M (2)

c(t)t0) ) c0 (3)

Fu ) F(Mu) u ) 1, ...,S (4)

fu(t) ) zucu(t) u ) 1, ...,S (5)

dfu(t)/dt ) Ju
+(t) - Ju

-(t) + Ru
+(c;t) - Ru

-(c;t) u ) 1, ...,S
(6)

Ru
((c;t) ) zuFu

((c;t) u ) 1, ...,S (7)

Ju
((t) ) zu Ju

((t) (8)

Fu {\}
Ru′u

Ruu′
Fu′ u * u′, u, u′ ) 1, ...,S (9)

Ru
+(c;t) ) ∑

u′*u

S

Ruu′(c;t) Ru
-(c;t) ) ∑

u′*u

S

Ru′u(c;t)

u ) 1, ...,S (10)

ωuu′(t) ) Ruu′(t)/fu′ (11)

Ωu
( ) Ju

((t)/fu (12)

dfu
/(t)/dt ) Ju

+/(t) - Ωu
-(t) fu

/(t) + ∑
u′*u

S

[ωuu′(t) fu′
/ (t) - ωu′u

(t) fu
/(t)] (13)

Ju
-/(t) ) Ωu

-(t) fu
/(t) (14)

Ru(t) ) Ju
+/(t)/Ju

+(t) (15)

âu(t) ) Ju
-/(t)/Ju

-(t) (16)

âu(t) ) ∑
u′)1

S ∫-∞

t
øuu′(t;t′) Ru′(t′) dt′ (17)

∑
u′)1

S ∫-∞

t
øuu′(t;t′) dt′ ) 1 (18)

d
dt

G(t,t′) ) K (t)G(t,t′) with G(t ) t′,t′) ) I (19)
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where

is a connectivity matrix, which contains useful information about
the structure of the reaction mechanism. The expressions for
the susceptibility functions are1-2

We introduce the notationθ ) t - t′ for the transit time of a
fragment andæuu′(θ;t) for its probability density, which fulfills
the normalization condition

We haveæuu′(θ;t) ) øuu′(t;t-θ); that is, the probability density
of the transit time is given by the susceptibility function.

We limit ourselves here to stationary processes for which
æuu′(θ;t) ) æuu′(θ) depends only on the transit time but is
independent of current time. Under these circumstances, the
response law (17) can be represented by a convolution product:

whereX denotes the temporal convolution product. For station-
ary processes the reaction rates and the effective rate coeffi-
cients are also time independent. From eq 20 it follows that the
matrix K (t) is also time independent,K (t) ) K . From eq 19 it
follows that the Green functionsGuu′(t,t′) ) [G(t,t′)]uu′ )
Guu′(t-t′) ) [G(t-t′)]uu′ depend only on the time difference
t - t′ and can be evaluated in terms of the exponential of the
matrix K (t) ) K . We have

A real time or frequency response experiment makes it
possible to evaluate the probability densityæuu′(t) of the transit
time, which is at the same time the susceptibility functionøuu′-
(t,t′) ) æuu′(t - t′); further on, from eqs 24 we can evaluate the
matrixK , which bears direct information about the connectivities
of the reaction species: if a nondiagonal matrix elementKuu′ is
different from zero, then there is a direct reaction pathway that
leads to the transport of a fragment from the carrier Mu′ to the
carrier Mu. In the following we illustrate this approach for
evaluating the species connectivities by considering two simple
biochemical reaction networks.

3. Simulation Approach

To test the possibilities of extracting connectivity information
from the type of experiment suggested in the previous section,
we consider a two-step simulation approach. (A) We simulate
the response of a chemical system to a neutral perturbation and
add noise to the response. (B) We use the simulated noisy data
for retrieving the connectivity matrix.

As a simulation tool, we decided to use Mathematica10

because of its unique ability to combine symbolic manipulations
with numerical computations in the same program. Mathematica
is a high-level programming language, which makes it possible

to change various numeric and symbolic components of a
program on the spot without debugging. These features outweigh
some shortcomings due to the limited numerical capabilities of
Mathematica.

Program A, which generates the noisy simulated response,
is based on eqs 10-14 and 19-24. Starting from a set of input
and reaction fluxes, we compute theK matrix and the matrix
of the Green functionsG; we limit ourselves to the case of
stationary states for which the total input, output, and reaction
fluxes are constant and only the excitation and response fractions
are time dependent. In this case the matrix of the Green functions
G is the exponential of the connectivity matrixK multiplied
by the time difference (t - t′) (eq 24); fortunately, Mathematica
has the ability to compute the exponential of a matrix symboli-
cally. Finally from eqs 17 and 21 we can compute the response
of the system to a given excitation; for simplicity, in most cases
we assume that the excitations are given by delta functions and
thus the responses are simply proportional to the susceptibility
functionsøuu′(t,t′) ) æuu′(t-t′). Finally, we add multiplicative
Gaussian noise to the response functions.

Program B, which extracts the connectivity matrix from the
noisy response data, is based on the same equations with some
adaptations. Starting from the noisy response, we can estimate
the matrix of the Green functions from eq 21. To get the
connectivity matrix from the Green functions, we apply two
different types of methods:

(a) a method based on the observation that eq 24 can be
viewed as the solution of the matrix differential equation:

from which we obtain

The method based on eq 26 is similar to the differential methods
in conventional chemical kinetics; because it involves the
evaluation of the derivatives of the Green functions with respect
to the transit timeθ ) t - t′, it is sensitive to experimental
errors. To eliminate the noise, we use fit functions for the Green
functions. We have used both polynomial fits as well as fits
based on the use of a linear combination of exponential
functions. The use of exponential fits has a theoretical justifica-
tion: if the connectivity matrix has simple eigenvalues,
then, according to the Sylvester theorem,11 it follows that the
Green functions are combinations of exponential functions:
∑uAu exp(λuθ), whereAu are amplitude factors andλu are the
eigenvalues of the secular equation attached to the connectivity
matrix, det|K - λI | ) 0. The analytic expressions obtained from
fitting are introduced into eq 26, which is evaluated symbolically
by Mathematica for an arbitrary positive transit timeθ. Further
on, estimates of the connectivity matrix are evaluated repeatedly
from eq 26 for various transit times. Finally, an average value
of the connectivity matrix is evaluated from these estimates.

(b) a method based directly on eq 24 written in the following
form:

which is also applied repeatedly for various values of the transit
times. Mathematica can evaluate symbolically the logarithm of
a matrix. A slightly different approach, which can be applied if

K (t) ) [(1 - δuu′)ωuu′(t) - δuu′[Ωu
-(t) +

∑
u′′*u

ωu′′u(t)]]u,u′ ) 1,...,S (20)

øuu′(t;t′) )
Ju′

+(t′) Guu′(t;t′)
fu(t)

(21)

∑
u′)1

S ∫0

t
æuu′(θ;t) dθ ) 1 (22)

âu(t) ) ∑
u′)1

S

øuu′(t) X Ru′(t) ) ∑
u′)1

S

æuu′(t) X Ru′(t) (23)

G(t-t′) ) exp[K (t-t′)] (24)

d
dθ

G(θ) ) KG (θ) G(0) ) I θ ) t - t′
(25)

K ) [ d
dθ

G(θ)][G(θ)]-1 (26)

K ) 1
θ

ln G(θ) (27)
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the eigenvalues of the connectivity matrix are simple, is based
on the equation

where

are the eigenvalues of the matrix of the Green functions.
Equation 28 can be derived by using the Sylvester theorem.11

The connectivity information can be easily extracted from
theK matrix. If the nondiagonal matrix elementKuu′ is different
from zero, then there is a direct reaction pathway, which leads
to the transport of a fragment from the carrier Mu′ to the carrier
Mu. The connectivity matrix can be also used for extracting
quantitative kinetic information; although this is beyond the
scope of the present article, a few possibilities are briefly
mentioned in section 5.

Before applying the method to real biochemical networks,
we carried out a numerical study of our approach on different
reaction networks for various values of the input, output, and
reaction fluxes and tried to identify what difficulties may occur.
Here is a summary of our observations:

(1) In the case of noisy data, exponential fits work better
than the polynomial fits, which tend to produce fake oscillations
of the response curves.

(2) The exponential fit has its own limitations, which can be
easily identified from eq 24. In some cases, even though from
the kinetic point of view the system is at a stationary state, the
response in the labeled fractions can display a slight, damped
oscillatory behavior; in this case the pure exponential fit should
be replaced by an exponential-trigonometric fit. Although rather
unlikely, for some symmetrical cases multiple eigenvalues may
occur; in such a case the exponential functions should be
modulated by polynomial terms. In both cases, the fitting
becomes too complicated and polynomial fits may provide a
simple solution (provided that the noise is small).

(3) A shortcoming of all fitting techniques is that for large
times they produce artificial results. In particular, in the case
of differential methods based on eq 26, for large transit times
we get spurious singularities, which originate in the canceling
of the determinant of the matrix of the Green functions.
Fortunately, these spurious singularities can be easily eliminated
by examining the plots of the matrix elements as functions of
transit time. Usually, for small to moderate transit times there
is a region without singularity which can be safely used for
evaluating the connectivity matrix

4. Application to the Upper Part of Glycolysis and the
Urea Cycle

In this section we illustrate the method developed in the
previous section with two biochemical examples: the upper part
of the glycolytic pathway and the urea cycle. In experiments
any type of excitation can be used. From eq 23, through
numerical deconvolution, it is possible to extract the elements
øuu′(t-t′) ) æuu′(t-t′) of the susceptibility matrix. In particular,
for unitary delta excitations of the type

where Au′
(0) are amplitude factors with physical dimension

[Time], δu′u0 are Kronecker symbols andδ(t) is Dirac’s unitary
delta function. For an excitation of type (30) the response output
fluxes attached to the different speciesu are proportional to the
susceptibility functions. From eqs 23 and 30 we have

that is, for an excitation the speciesu0 with a unitary delta
impulse, the response of speciesu is proportional to the
susceptibility functionøuu0(t) and the proportionality factor is
the amplitudeAu0

(0). For simplicity, without loss of generality,
for the experiments simulated in this section we assume that
the excitation and response functions are given by eqs 30 and
31.

For each example the response curves (the susceptibility
functions) are calculated using the method presented in section
2. The curves are generated with a certain amount of noise to
simulate actual experimental data. We carried out many simula-
tions to explore the effects of different noise intensities, different
fitting methods used as well as various possible approaches for
evaluating the connectivity matrix. In this section we present
the results of two typical simulations. In the examples shown
here, a multiplicative noise factor of average relative intensity
of 10% has been used. For larger values of the noise the method
fails to reproduce the correct size of a few components of the
connectivity matrix (typically, one, maximum two).

Figure 1 shows the scheme of the three reactions taken in
the case of the glycolysis. This is a simple reaction network,
with three species, and two enzymatic reactions, the first one

Figure 1. Schematic representation of the upper part of glycolysis.
The concentrations of the three species are 2.5, 0.6, and 5.5 mM,
respectively. The net flux though the network is 0.8 mM/min. All the
fluxes are shown in square brackets [mM/min].

K )
1

θ
∑

u

ln(µu)∏
V*u[G(θ) - IµV

µu - µV
] ) ∑

u

λu∏
V*u

[ G(θ) - I exp(λVθ)

exp(λuθ) - exp(λVθ)] (28)

µu ) exp(λuθ) (29)

Ru′(t) ) Au′
(0)δu′u0

δ(t) (30)

âu(t)|u0
) Au0

(0)øuu0
(t) (31)
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being reversible. To produce the simulated response curves, it
is necessary to know: the reactions rates of transformation of
the species of the network; the concentration of each species;
and the input and output fluxes of each one. The data for the
simulation of a tracer-pulse experiment have been taken from
the literature (see Teusink et all12 and Crawford and Blum13)
and the database SABIO-RK (Wittig et al.14). It is obvious that
kinetic and concentration data vary from one biological system
to another (species, organism, tissue, experimental or biological
conditions, etc.). Here we have taken a typical set of values for
these data. (The values in mM are indicated in the caption of
Figure 1.) The reaction fluxes are indicated in square brackets
in Figure 1, in mM/min.

The original K matrix computed by applying our first
simulation program (A) is

From this original matrix the response curves can be calculated.
In Figure 2 the dots represent the simulated susceptibility
functions for the different species. The simulated data contain
multiplicative Gaussian random errors of a relative average
intensity of 10%. The solid lines show the best exponen-
tial fitting of the data. From these curves, following the
method described above we extract the following connectivity
matrix K :

For polynomial fitting (not shown) the resulting matrix is

From these results it can be inferred that there is no reaction
connection between species 3 to 1 and 3 to 2. This can be
directly noted from Figure 2, where the susceptibility func-
tions ø31 andø32 are zero. The matrix elementK31 has a small
negative value but no zero. This can be also interpreted as a
nondirect connection between species 1 and 3. In other
simulations (not shown) with lower noise factor the matrix
elementK31 is zero.

In Figure 3 we give a schematic representation of the reaction
network of the urea cycle. The invariant part of the molecule is
represented with solid bonds. In eukaryotic cells the urea cycle
takes place in different cell compartments, part of the reactions
in the cytoplasm and part in mitochondria (see Maher et al.15)).
In our simulations we ignore the compartments and consider a
homogeneous system. All the enzyme reactions of the cycle
are reversible. The concentrations of the metabolites of the cycle
vary substantially as a function of the organism, tissue, or
experimental conditions. Here we have used concentrations from
the literature (see Maher et al.15) and the data base SABIO-RK
(Wittig et al.14). The metabolite concentrations (indicated in the
caption of Figure 3, mM) have been evaluated by maintaining
relative proportions. The fluxes chosen in the simulated experi-
ment lead to a clockwise net flux (shown in Figure 3, in

K reproduced
polynomial) [-0.45 0.34 0.00

0.38 -1.71 0.00
-0.01 1.46 -0.18] (34)

Figure 2. Graphical representation of the elements of the susceptibility matrix [min-1] for the upper part of the glycolysis as functions of the
transit time [min]. The susceptibility functions are computed from pulse excitations of the type described by eq 30 for which the responses of
different species are proportional to the various elements of the susceptibility matrix (eq 31). Dots represent the simulated noisy data and the
continuous curves the corresponding exponential fits.

Koriginal ) [-0.48 0.33 0.00
0.40 -1.75 0.00
0.00 1.33 -0.16] (32)

K reproduced
exponential) [-0.46 0.31 0.00

0.37 -1.81 0.00
-0.01 1.48 -0.21] (33)
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mM/min). Most of the arginosuccinic acid is bound to the
enzyme (an effect referred to as ‘tunneling’, by Maher et al.15)
and thus its concentration is not used explicitly in computations;

this is possible because in our simulated experiments this
metabolite has low input and output rates and its effective
concentration is close to saturation.

Figure 3. Schematic representation of the urea cycle. The concentrations of the four species of the cycle are 0.5, 1.0, 0.8, and 1.0 mM, respectively.
The figure displays pairs of reaction fluxes in the following form: [clockwise-flux/counterclockwise-flux]. The net flux throughout the cycle is 0.1
mM/min and the net production of urea is 0.1 mM/min. The input and output fluxes are shown in square brackets [mM/min].

Figure 4. Graphical representation of the elements of the susceptibility matrix [min-1] for the urea cycle example as functions of the transit time
[min]. Dots represent the simulated noisy data and the continuous curves the corresponding exponential fits.
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For our simulated experiment the original connectivity matrix
K computed with our first simulation program (A) is

As in the example of the glycolysis, the elements with value
0.0 show that there is no direct transformation reaction between
the corresponding species. From this original connectivity matrix
we simulate the response curves. In Figure 4 the dotted curves
represent a set of realizations of the 16 susceptibility functions
of the system computed for an average Gaussian noise intensity
of 10% and the continuous curves represent the corresponding
exponential fits.

The connectivity matrix extracted from this simulated experi-
ment is

for exponential fitting, and

for polynomial fitting.
Even with 10% noise the connectivity matrix is reproduced

with a reasonable accuracy and from it the structure of the
reaction network can be determined. The elementsK31,K42, K13,
and K24 are zero or negative close to zero: this implies that
there is no connection between species 1 and 3 on the one hand
and 2 and 4 on the other, which is evidence of a cyclic reaction
network with all the reactions reversible.

5. Discussion

We start out by outlining the limitations of our approach.
Given enough computing power, there are no limitations
regarding the numbers of species involved in a response
experiment; we must point out that the time necessary for
extracting the connectivity matrix from response data increases
with the number of species. We carried out our computations
on a 64 Bit AMD computer at 2.4 GHz, under Ubuntu Linux
64Bit and Windows XP 32Bit. For both operating systems a
3-4 species computation with exponential fits varies between
10 and 30 min with an average of 15 min; the computations
based on polynomial fits are much faster. Because curve fitting
is the slowest computation process, the time required for the
evaluation of the connectivity matrix is approximately propor-
tional to the square of the number of species. A more serious
limitation is the size of experimental errors; the method works
well for experimental errors up to 10% but for higher errors,
e.g., up to 20%, fails to reproduce few elements of the
connectivity matrix (typically one or two) for errors higher than
20% usually the method fails completely; in general, the
exponential fits produce better results than the polynomial fits.

In our current approach the statistical treatment of noisy data
is rather crude. For higher errors our method can be improved
by using statistical estimation methods,16 based on likelihood
approach or on Bayesian methods; we are currently working
on a method based on the likelihood approach.

In addition to qualitative information about a reaction
network, the connectivity matrix also contains quantitative
information and can be used for obtaining kinetic laws and rate
coefficients from experimental data. In general, such studies
require the repetition of response experiments for different
concentrations of the active species, according to eqs 11 and
20 the nondiagonal components, of the connectivity matrix,
Kuu′ ) ωuu′ ) Ruu′/fu′, u * u′, are specific rates of transfer of a
fragment from one carrier to another, which for stationary
experiments are time independent and generally concentration
dependent. From repeated experiments it is easy to evaluate the
concentration dependence of the ratesRuu′, from which we can
evaluate kinetic laws and parameters (reaction orders, rate
coefficients, activation energies, etc.).

An alternative approach for kinetic studies is based on the
study of the concentration and temperature dependence of the
eigenvaluesλu which are the solutions of the secular equation
attached to the connectivity matrix, det|K - λI | ) 0, and can
be determined by means of exponential fits of the response data.
As the dependence of the eigenvalues on the concentrations and
other parameters, such as temperature, can be extremely
complicated, it is easier to study the variations of a set of the
tensor invariants17 built from the eigenvaluesλm

Typically, the dependencesJw ) Jw(concentrations) can be
expressed by polynomials, where the coefficients of the
concentrations depend on the rate coefficients of the process.
Starting from different assumed reaction mechanisms, we can
derive theoretical expressions for the dependence on the
invariants on the concentrations. By checking the validity of
these dependences for the experimental data, we can test the
validity of the assumed reaction mechanisms. By repeating the
experiments at different temperatures, we can determine the
activation energies corresponding to different reaction steps, etc.
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Koriginal ) [-1.2 0.1 0.0 0.3
0.6 -0.5 0.125 0.0
0.0 0.2 -0.625 0.2
0.4 0.0 0.375 -0.55

] (35)

K reproduced
exponential) [-1.13 0.09 0.00 0.27

0.54 -0.48 0.13 0.01
0.00 0.19 -0.73 0.21
0.46 -0.01 0.41 -0.59

] (36)

K reproduced
polynomial) [-1.17 0.10 0.00 0.31

0.57 -0.48 0.14 0.00
0.00 0.20 -0.73 0.22
0.46 -0.01 0.40 -0.53

] (37)

Jw ) ∑
V1

...∑
Vw

λV1 ... λVw (38)

1850 J. Phys. Chem. A, Vol. 111, No. 10, 2007 Morán et al.



(10) Wofram, S.Mathematica Book, 4th ed.; Wolfram Media: Cham-
paign, IL, 1999.

(11) Frazer, R. A.; Duncan, W. J.; Collar, A.R.Elementary Matrices;
Cambridge University Press: Oxford, U.K., 1965; Chapters 2-3.

(12) Teusink, B.; Passarge, J.; Reijenga, C. A.; Esgalhado, E.;
van der Weijden, C. C.; Schepper, M.; Walsh, M. C.; Bakker, B. M.;
van Dam, K.; Westerhoff, H. V.; Snoep, J. L.Eur. J. Biochem. 2000, 267,
5313.

(13) Crawford, J. M.; Blum, J. J.Biochem. J. 1983, 212, 595.

(14) Wittig, U.; Golebiewski, M.; Kania, R.; Krebs, O.; Mir, S.;
Weidemann, A.; Anstein, S.; Saric, J.; Rojas, I.Lecture Notes Bioinformatics
2006, 4075, 94.

(15) Maher, A. D.; Kuchel, P. W.; Ortega, F.; Atauri, P.; Centelles, J.;
Cascante, M.Eur. J. Biochem.2003, 270, 3953.

(16) Frieden, B. R.;Probability, Statistical Optics and Data Testing,
3rd ed.; Springer: Berlin, 2001.

(17) Aris, R. Vectors, Tensors and the Basic Equations of Fluid
Mechanics; Dover: New York, 1990.

Connectivity Data for Nonlinear Reaction Networks J. Phys. Chem. A, Vol. 111, No. 10, 20071851


