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Species Connectivities and Reaction Mechanisms from Neutral Response Experiments

1. Introduction

In our previous work we carried out a systematic theoretical
analysis of a new type of response experiment in physical
chemical, biological kinetics, and population dynandicsin
our studies the response is linear, even though the underlying
evolution equations are generally nonlinear. In the suggested
experiments the linearity is due to the use of labeled species,
which have the same kinetic and transport properties as the
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We develop a new method for obtaining connectivity data for nonlinear reaction networks, based on linear
response experiments. In our approach the linear response is not the result of an approximation procedure but
is due to the appropriate design of the response experiments, that is (1) they are carried out with the preservation
of constant values for the total (labeled plus unlabeled) input and output fluxes and (2) the labeled compounds
obey a neutrality condition (i.e., they have practically the same kinetic and transport properties as the unlabeled
compounds). Under these circumstances the linear response equations hold even though the kinetics of the
process is highly nonlinear. On the basis of this linear response law, we develop a method for evaluating
reaction connectivities in biochemical networks from stationary response experiments. Given a system in a
stationary regime, a pulse of a labeled species is introduced (with conservation of the total flux) and then the
response of all the species of the network is recorded. The mechanistic information is contained in a connectivity
matrix, K, which can be evaluated from the response data by means of differential as well as integral methods.
The approach does not require any prior knowledge of the reaction mechanism. We carried out a numerical
study of the method, based on a two-step procedure. Starting from a known reaction mechanism, we generated
response data sets, to which we add noise; then, we use the noisy data sets for retrieving the connectivity
matrix. The calculations were done with two programs written in Mathematica: the urea cycle and the upper
part of glycolysis are used as sample biochemical networks. Given enough computer power, there are no
limitations concerning the number of species involved in the response experiments; on current desktop systems
processing responses of teens of species would take a few hours. The method is limited by the occurrence of
experimental errors: if experimental errors in the evaluation of fluxes are larger than 10%, the method may
fail to reproduce the correct values of some elements of the connectivity matrix.

short summary of the method of neutral response experiments

in homogeneous systems and elaborate a general approach for

determining the reaction connectivities. In section 3 we present
' the simulation approach used in our research. In section 4 we
give the results of the simulation approach applied to the urea
cycle and the upper part of glycolysis. Finally in section 5 we
consider the limits of our procedure as well as the possibilities
of extending our approach to the quantitative analysis of reaction
networks.

unlabeled species (neutrality condition), and not due to a

linearization pro_cedure_. We have shown that this type of 2. Species Connectivities from Response Experiments
response experiment is useful and we presented different ) _
applications of our approach: for example, the study of fractal We $tudy a complex ch§m|cal system and conS|d_er a set of
response experiments in desorption kinetidhe study of Sspecies N, u =1, ...,Swhich can carry one or more identical

on—off time distributions in single molecule kinetiésand molecular fragments; these are unchanged during the process
the analysis of geographical spread of mutations in human and we refer to these species as “carriers”. We limit ourselves
populations:6 to the case of isothermal, well-stirred, homogeneous systems,

In this paper we focus on the application of our approach to for which the concentrations, = c(t), u = 1, ..., S, of the
the qualitative and quantitative analysis of complex reaction chemicals M, u= 1, ...,S, are space independent and depend
systems, more precisely to the determination of the reaction ©nly on time! The kinetic equations of the process can be
connectivities and mechanisms from neutral response experi-expressed in the following form:
ments. Our current approach shares common features with other
types of response experiments developed recéstlfhe dc,(t)/dt =(,,<": ) — %+ p:(c;t) —p,(ct)
structure of the paper is the following. In section 2 we give a u=1,..S (1)

T Universidad Complutense Madrid. . . .
* Stanford University. where p, (c;t) are the rates of formation and consumption of

8 Casa Academiei Romane. the species M respectively,ﬁ(t) are the input and output
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fluxes of M,, respectively, and We introduce the specific rates of transport of a fragment
from one carrier to another and in and out of the system:
c(t) = [Cy()]=1,..m 2)
t) = t)/f, 11
is the composition vector of the system. Together with the initial @u(®) = R/ (1)
condition Qui _ ‘Ja:(t)/fu (12)
c(t=ty) = ¢, ©))

Herewyy(t) dt = dt Ry(t)/fy is the infinitesimal probability of
eq 1 determines the time evolution of the concentration vector. transport of a fragment from the carrier,Mo the carrier M at
We denote byz, the number of fragments in the carrier g time betweer andt + dt; similarly, Qf dt = dt Jui(t)/fu is
speciesu. We use the notation the infinitesimal probability that a fragment in the carrieg M
enters or leaves the system at a time betweandt + dt. If
Fy=FM,) u=1,..5 (4) the kinetic isotope effect is missing, the rate of exchange of the
labeled fragments in the system can be completely expressed
in terms of these infinitesimal probabilities. We assume that
the time dependences of the total raRRgs, = Ryu(c;t) and
Ji(t) = z,%(t) attached to the total amounts of fragments
from different carriers, labeled and unlabeled, are not changed
during the process. We use the notatifjji§, u = 1, ..., S, for
f,(1) =z, 1) u=1,..S (5) the concentrations of labeled fragments dje(t), u = 1, ...,
S, for the input and output fluxes of labeled fragments,
The kinetic equation (1) can be expressed in terms of the respectively. We use the kinetic isotope approach in the
concentration§,(t), u= 1, ..., S of the fragment fFu=1, ..., form suggested by Neiman and &alnd derive the balance
S in the carrieru; we have equation$

for a molecular fragment in the carrier MAll fragments F in
different carriers N have the same structure; the labeheans
that a fragment belongs to a given carrier. The concentrations
fu(t),u=1, ...,S of the fragments Fu =1, ...,S,which belong

to different carriers are given by

df ()/dt = 37 (1) — ;) + Ri(cH) — R, (ct)  u=1,..,S s
©)  dii/dt =377 — QO T + Y (0w i) — oy,

u=Zu

where

(1) 501 (13)

Rict) =z (ct) u=1,..S (7)
and
are the rates of formation and consumption of the fragmegnt F
in the carrieru =1, ..., S and J5(0) = Q) fi(b) (14)
+ = /.
J(®= 2‘“7“1 ® ®) We define the fractions of labeled fragments in the input fluxes

are input and output fluxes of fragment, I the carrieu = 1, I
..., S respectively. A fragment is transferred from one carrier o (t) = I (034 (1) (15)

to another. These transfer processes involving fragments F
=1, ...,,S among different carriers can be represented as and the fractions of labeled fragments in the output fluxes

Rj’u — —
Py Fe u=vuu=1..5 9) B =370/, (16)

whereRy, = Ry(C;t) is the rate of transport of the fragment F~ From eqgs 13-16 we can derive the following response laws:

from a carrier M, to a carrier My. The rateR,, are related to 12

the formation and consumption rat@'g*(c;t) of the fragment

Fu in the carrier M by means of the balance equations S . -
. . A= 3 foualtit) an(®) ot (17)
=
RiGh= Y Rule)  R(G)= Y Rufc) _ - _
d=u u=u where yuy(t;t') are non-negative susceptibility functions that
u=1,..S (10) fulfill the normalization condition:

If the mechanism and kinetics of the process are known, then s
the transformation rateBy, = Ryu(C;t) can be evaluated by Z fj (Gt dt =1 (18)
using the mass action law or other kinetic laws. =

Now we can consider a kinetic tracer experiment by assuming
that a fractionay, u = 1, ..., S of the “in” flux J}(t) of the Two types of expressions have been derived for the susceptibility
fragment [ is replaced by a labeled fragmerif &d suppose  functionsy,u(t;t'). Here we give only one set of relations, which
that there is no kinetic isotope effect; that is, the rates of the depend on the Green functio®@y(t,t'") = [G(t,t")]uy, Which
processes involving labeled species are the same as the rates @fre the solutions of the matrix differential equation
the processes involving unlabeled species. We assume that the
fractionsfy, u=1, ...,S of the labeled fragments in the output

d I J— I H J— I I —
fluxes J; (), u = 1, ..., S,can be measured experimentally. dtG(t't) =K@OGEr) with G(t=t.t) =| (19)
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where to change various numeric and symbolic components of a
program on the spot without debugging. These features outweigh
K®) =[(1 — oy )wyu(t) — 0, [, 1) + some shortcomings due to the limited numerical capabilities of

@y O] L (20) Mathematica.
UZU vullluuw=1,.s Program A, which generates the noisy simulated response,

is based on egs 114 and 19-24. Starting from a set of input
is a connectivity matrix, which contains useful information about and reaction fluxes, we compute tKematrix and the matrix
the structure of the reaction mechanism. The expressions forof the Green function€s; we limit ourselves to the case of

the susceptibility functions ate? stationary states for which the total input, output, and reaction
fluxes are constant and only the excitation and response fractions
Jﬁ(t’) G, (t:t) are time dependent. In this case the matrix of the Green functions
Yu(Gt) = T (21) G is the exponential of the connectivity matri& multiplied
u

by the time differencet(— t') (eq 24); fortunately, Mathematica
has the ability to compute the exponential of a matrix symboli-
cally. Finally from eqgs 17 and 21 we can compute the response
of the system to a given excitation; for simplicity, in most cases
we assume that the excitations are given by delta functions and
S . thus the responses are simply proportional to the susceptibility
zfocpuu(e;t) do=1 (22) functionsyuy(t,t') = @uu(t—t'). Finally, we add multiplicative
=1 Gaussian noise to the response functions.
) . ) Program B, which extracts the connectivity matrix from the
We havepuu(6;t) = yuu(tit—0); that is, the probability density  5isy response data, is based on the same equations with some
of the transit time is given by the susceptibility function. 54aptations. Starting from the noisy response, we can estimate
We limit ourselves here to stationary processes for which e matrix of the Green functions from eq 21. To get the
Pui(0) = ¢uu(f) depends only on the transit time but is  connectivity matrix from the Green functions, we apply two
independent of current time. Under these circumstances, thegitferent types of methods:

response law (17) can be represented by a convolution product: (a) a method based on the observation that eq 24 can be

We introduce the notatio =t — t' for the transit time of a
fragment andpy(6;t) for its probability density, which fulfills
the normalization condition

s s viewed as the solution of the matrix differential equation:
ﬁu(t) = qu(t) ® au’(t) = (Puu(t) ® au’(t) (23) d
u= i= @G(G)ZKG(G) G@0) =1 0=t—-t

where® denotes the temporal convolution product. For station- (25)

ary processes the reaction rates and the effective rate coeffi-, ., \which we obtain

cients are also time independent. From eq 20 it follows that the

matrix K (t) is also time independeri(t) = K. From eq 19 it d 1

follows that the Green functionSuy(t,t) = [G(tt)]w = K= [@ G(H)][G(H)] (26)
Guy(t—t') = [G(t—t')]uy depend only on the time difference

t — t' and can be evaluated in terms of the exponential of the The method based on eq 26 is similar to the differential methods

matrix K(t) = K. We have in conventional chemical kinetics; because it involves the
N ) evaluation of the derivatives of the Green functions with respect
G(t—t) = expK (t—t)] (24) to the transit timef =t — t, it is sensitive to experimental

; errors. To eliminate the noise, we use fit functions for the Green
functions. We have used both polynomial fits as well as fits
based on the use of a linear combination of exponential
functions. The use of exponential fits has a theoretical justifica-
tion: if the connectivity matrix has simple eigenvalues,
then, according to the Sylvester theor&hit, follows that the
Green functions are combinations of exponential functions:
> A expiub), whereA, are amplitude factors and, are the
eigenvalues of the secular equation attached to the connectivity
matrix, defKk — Al| = 0. The analytic expressions obtained from
fitting are introduced into eq 26, which is evaluated symbolically
by Mathematica for an arbitrary positive transit tidheFurther
3. Simulation Approach on, estimates of the connectivity matrix are evaluated repeatedly
from eq 26 for various transit times. Finally, an average value
To test the possibilities of extracting connectivity information  f the connectivity matrix is evaluated from these estimates.

from the type of experiment suggested in the previous section, (b) a method based directly on eq 24 written in the following
we consider a two-step simulation approach. (A) We simulate form:

the response of a chemical system to a neutral perturbation and
add noise to the response. (B) We use the simulated noisy data
for retrieving the connectivity matrix.

As a simulation tool, we decided to use Mathemadfica
because of its unique ability to combine symbolic manipulations which is also applied repeatedly for various values of the transit
with numerical computations in the same program. Mathematicatimes. Mathematica can evaluate symbolically the logarithm of
is a high-level programming language, which makes it possible a matrix. A slightly different approach, which can be applied if

A real time or frequency response experiment makes i
possible to evaluate the probability density;(t) of the transit
time, which is at the same time the susceptibility functm-
(t,t") = @uu(t — t'); further on, from eqs 24 we can evaluate the
matrix K, which bears direct information about the connectivities
of the reaction species: if a nondiagonal matrix elenkgptis
different from zero, then there is a direct reaction pathway that
leads to the transport of a fragment from the carrigr el the
carrier M,. In the following we illustrate this approach for
evaluating the species connectivities by considering two simple
biochemical reaction networks.

K = % In G(6) 27)
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Figure 1. Schematic representation of the upper part of glycolysis.
The concentrations of the three species are 2.5, 0.6, and 5.5 mM,
respectively. The net flux though the network is 0.8 mM/min. All the
fluxes are shown in square brackets [mM/min].

the eigenvalues of the connectivity matrix are simple, is based

on the equation

G(6) — lu,

—zlnwu)ﬂ

v=U

=24[]

G(0) — | exp@,b)

expi,0) — exp@,0)

(28)

where

1y = exp@,0) (29)
are the eigenvalues of the matrix of the Green functions.
Equation 28 can be derived by using the Sylvester thedtem.
The connectivity information can be easily extracted from
theK matrix. If the nondiagonal matrix elemeldty is different

J. Phys. Chem. A, Vol. 111, No. 10, 2001847

(2) The exponential fit has its own limitations, which can be
easily identified from eq 24. In some cases, even though from
the kinetic point of view the system is at a stationary state, the
response in the labeled fractions can display a slight, damped
oscillatory behavior; in this case the pure exponential fit should
be replaced by an exponential-trigonometric fit. Although rather
unlikely, for some symmetrical cases multiple eigenvalues may
occur; in such a case the exponential functions should be
modulated by polynomial terms. In both cases, the fitting
becomes too complicated and polynomial fits may provide a
simple solution (provided that the noise is small).

(3) A shortcoming of all fitting techniques is that for large
times they produce artificial results. In particular, in the case
of differential methods based on eq 26, for large transit times
we get spurious singularities, which originate in the canceling
of the determinant of the matrix of the Green functions.
Fortunately, these spurious singularities can be easily eliminated
by examining the plots of the matrix elements as functions of
transit time. Usually, for small to moderate transit times there
is a region without singularity which can be safely used for
evaluating the connectivity matrix

4. Application to the Upper Part of Glycolysis and the
Urea Cycle

In this section we illustrate the method developed in the
previous section with two biochemical examples: the upper part
of the glycolytic pathway and the urea cycle. In experiments
any type of excitation can be used. From eq 23, through
numerical deconvolution, it is possible to extract the elements
yuu(t—t) = @uu(t—t') of the susceptibility matrix. In particular,
for unitary delta excitations of the type

Ay (®) = AP0, O(1) (30)
where \,/{ff,’) are amplitude factors with physical dimension
[Time], dywo are Kronecker symbols anit) is Dirac’s unitary
delta function. For an excitation of type (30) the response output
fluxes attached to the different specieare proportional to the
susceptibility functions. From egs 23 and 30 we have

BuOly, = i, ®

that is, for an excitation the species with a unitary delta
impulse, the response of speciasis proportional to the
susceptibility functiom(um(t) and the proportionality factor is
the amplltude{‘ For simplicity, without loss of generality,
for the experlments simulated in this section we assume that
the excitation and response functions are given by eqgs 30 and
31

For each example the response curves (the susceptibility

(1)

from zero, then there is a direct reaction pathway, which leads functions) are calculated using the method presented in section

to the transport of a fragment from the carriey; kb the carrier
My. The connectivity matrix can be also used for extracting
quantitative kinetic information; although this is beyond the
scope of the present article, a few possibilities are briefly
mentioned in section 5.

Before applying the method to real biochemical networks,
we carried out a numerical study of our approach on different
reaction networks for various values of the input, output, and
reaction fluxes and tried to identify what difficulties may occur.
Here is a summary of our observations:

(1) In the case of noisy data, exponential fits work better
than the polynomial fits, which tend to produce fake oscillations
of the response curves.

2. The curves are generated with a certain amount of noise to
simulate actual experimental data. We carried out many simula-
tions to explore the effects of different noise intensities, different
fitting methods used as well as various possible approaches for
evaluating the connectivity matrix. In this section we present
the results of two typical simulations. In the examples shown
here, a multiplicative noise factor of average relative intensity
of 10% has been used. For larger values of the noise the method
fails to reproduce the correct size of a few components of the
connectivity matrix (typically, one, maximum two).

Figure 1 shows the scheme of the three reactions taken in
the case of the glycolysis. This is a simple reaction network,
with three species, and two enzymatic reactions, the first one
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Figure 2. Graphical representation of the elements of the susceptibility matrixfinfar the upper part of the glycolysis as functions of the

transit time [min]. The susceptibility functions are computed from pulse excitations of the type described by eq 30 for which the responses of
different species are proportional to the various elements of the susceptibility matrix (eq 31). Dots represent the simulated noisy data and the
continuous curves the corresponding exponential fits.

being reversible. To produce the simulated response curves, itFor polynomial fitting (not shown) the resulting matrix is
is necessary to know: the reactions rates of transformation of

the species of the network; the concentration of each species; —0.45 0.34 0.00
a_nd the_ input and output fluxes of_ each one. The data for the Kpgggglrpclgldz 0.38 —1.71 0.00 (34)
simulation of a tracer-pulse experiment have been taken from —001 146 —0.18

the literature (see Teusink et &lland Crawford and Bluf)

and the database SABIO-RK (Wittig et'd). It is obvious that  From these results it can be inferred that there is no reaction
kinetic and conc_entration (_1ata vary from one biological system connection between species 3 to 1 and 3 to 2. This can be
to an_o_ther (species, organism, tissue, expe_rlmental or blologlcaldirecﬂy noted from Figure 2, where the susceptibility func-
conditions, etc.). Here we have taken a typical set of values for tions ya1 andys are zero. The matrix elemekt; has a small

these data. (The va[ues in'mM are |nd|cateq in the caption of negative value but no zero. This can be also interpreted as a
Figure 1.) The reaction fluxes are indicated in square brackets . : .
nondirect connection between species 1 and 3. In other

in Figure 1, in mM/min. . . . ; .
The original K matrix computed by applying our first simulations (not shown) with lower noise factor the matrix
elementKs; is zero.

simulation program (A) is
In Figure 3 we give a schematic representation of the reaction
network of the urea cycle. The invariant part of the molecule is
0.40  —1.75 0.00 (32) represented with solid bonds. In eukaryotic cells the urea cycle
0.00 133 -016 takes place in different cell compartments, part of the reactions
From this original matrix the response curves can be calculated.in the cytoplasm and part in mitochondria (see Maher &jgl.
In Figure 2 the dots represent the simulated susceptibility In our simulations we ignore the compartments and consider a
functions for the different SpeCieS. The simulated data contain homogeneous System_ All the enzyme reactions of the Cyc|e
multiplicative Gaussian random errors of a relative average are reversible. The concentrations of the metabolites of the cycle
intensity of 10%. The solid lines show the best exponen- vary substantially as a function of the organism, tissue, or
tial fitting of _the data. From these curves, . following t_h‘? experimental conditions. Here we have used concentrations from
method described above we extract the following connectivity the literature (see Maher et'#).and the data base SABIO-RK

—0.48 0.33 0.00
K

original —

matrix K: (Wittig et al14). The metabolite concentrations (indicated in the
~0.46 0.31 0.00 caption of Figure 3, mM) have been evaluated by maintaining
Kregggr&ir;g: 037 —1.81 0.00 (33) relative proportions. The fluxes chosen in the simulated experi-

—001 148 —-021 ment lead to a clockwise net flux (shown in Figure 3, in
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Figure 3. Schematic representation of the urea cycle. The concentrations of the four species of the cycle are 0.5, 1.0, 0.8, and 1.0 mM, respectively.
The figure displays pairs of reaction fluxes in the following form: [clockwise-flux/counterclockwise-flux]. The net flux throughout the cytle is 0
mM/min and the net production of urea is 0.1 mM/min. The input and output fluxes are shown in square brackets [mM/min].
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Figure 4. Graphical representation of the elements of the susceptibility matrix [irfior the urea cycle example as functions of the transit time
[min]. Dots represent the simulated noisy data and the continuous curves the corresponding exponential fits.

mM/min). Most of the arginosuccinic acid is bound to the this is possible because in our simulated experiments this
enzyme (an effect referred to as ‘tunneling’, by Maher ébal.  metabolite has low input and output rates and its effective
and thus its concentration is not used explicitly in computations; concentration is close to saturation.

0.025
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For our simulated experiment the original connectivity matrix
K computed with our first simulation program (A) is

-1.2 01 00 03
|0 -05 0125 00
Korgnai = (0.0 0.2 —0.625 0.2 (35)
04 00 0.375 —055

As in the example of the glycolysis, the elements with value

0.0 show that there is no direct transformation reaction between

the corresponding species. From this original connectivity matrix

we simulate the response curves. In Figure 4 the dotted curves

represent a set of realizations of the 16 susceptibility functions

of the system computed for an average Gaussian noise intensit
of 10% and the continuous curves represent the corresponding

exponential fits.
The connectivity matrix extracted from this simulated experi-
ment is

113 009 000 0.27]
cewponenia_ [0.54 —0.48 013 001 | o
reproduced— [0 00 0.19 —0.73 0.21

046 —0.01 0.41 —0.59

for exponential fitting, and

117 010 000 0.31]
cporemal_ [0.57  —0.48 0.14  0.00 | o)
reproduced™ |0. 00 0.20 —0.73 0.22

046 —0.01 040 —0.53

for polynomial fitting.

Even with 10% noise the connectivity matrix is reproduced
with a reasonable accuracy and from it the structure of the
reaction network can be determined. The elem&patdao, K13,

Y

Moran et al.

In addition to qualitative information about a reaction
network, the connectivity matrix also contains guantitative
information and can be used for obtaining kinetic laws and rate
coefficients from experimental data. In general, such studies
require the repetition of response experiments for different
concentrations of the active species, according to egs 11 and
20 the nondiagonal components, of the connectivity matrix,
Kuw = ow = Ruw/fy, u = U, are specific rates of transfer of a
fragment from one carrier to another, which for stationary
experiments are time independent and generally concentration
dependent. From repeated experiments it is easy to evaluate the
concentration dependence of the raRgg, from which we can
evaluate kinetic laws and parameters (reaction orders, rate
coefficients, activation energies, etc.).

An alternative approach for kinetic studies is based on the
study of the concentration and temperature dependence of the
eigenvalued., which are the solutions of the secular equation
attached to the connectivity matrix, ¢iet— Al| = 0, and can

be determined by means of exponential fits of the response data.
As the dependence of the eigenvalues on the concentrations and
other parameters, such as temperature, can be extremely
complicated, it is easier to study the variations of a set of the
tensor invariants built from the eigenvalueén,

= z z Ay v ey

v1

(38)

Typically, the dependenceg, = _%/(concentrations) can be
expressed by polynomials, where the coefficients of the
concentrations depend on the rate coefficients of the process.
Starting from different assumed reaction mechanisms, we can
derive theoretical expressions for the dependence on the
invariants on the concentrations. By checking the validity of

and K4 are zero or negative close to zero: this implies that these dependences for the experimental data, we can test the
there is no connection between species 1 and 3 on the one hangalidity of the assumed reaction mechanisms. By repeating the
and 2 and 4 on the other, which is evidence of a cyclic reaction experiments at different temperatures, we can determine the

network with all the reactions reversible.

5. Discussion

We start out by outlining the limitations of our approach.
Given enough computing power, there are no limitations

regarding the numbers of species involved in a response

experiment; we must point out that the time necessary for

extracting the connectivity matrix from response data increases
with the number of species. We carried out our computations

on a 64 Bit AMD computer at 2.4 GHz, under Ubuntu Linux

64Bit and Windows XP 32Bit. For both operating systems a
3—4 species computation with exponential fits varies between
10 and 30 min with an average of 15 min; the computations

activation energies corresponding to different reaction steps, etc.
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